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A powerful example, differential system at 6 dimensions with periodic solutions, on EcosimPro
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1. The differential system
We have )( XfX  with  
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For some periodic orbit it is sufficient to find initial conditions of X (position and velocity) such that after half 
an orbit some values remain null as initially:  

In clear, the starting point is in the 

That means that if X

the final condition there are 3 zeros. 

2. Solutions of periodic orbits
To find a periodic orbit, we suppose that a first starting point not too far from the solution is given. In order to 
reduce the number of guesses to do, one can fix the initial value 

The new problem of the 3 zeros is to find Y such that  

(the value of t is T½ , the time at which  y is for the first time null after the integration 0 to t; i.e. the trajectory is back to the x,z plane). 

Iterations by Newton method can be used for finding right guesses:

Like for a 1-D curve: for finding a new guess 

the line "v=0": v0=h(u0). so 
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For some periodic orbit it is sufficient to find initial conditions of X (position and velocity) such that after half 
an orbit some values remain null as initially:  yT½=0=y0 and x T½=0= x 0 and z T½=0=

In clear, the starting point is in the x,z plane because y0=0 with no velocity on 
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then such orbit is periodic. One notes that in 

the final condition there are 3 zeros. 

To find a periodic orbit, we suppose that a first starting point not too far from the solution is given. In order to 
uesses to do, one can fix the initial value 0x (and further make a loop on it) .

The new problem of the 3 zeros is to find Y such that  0)( Yg with 
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is for the first time null after the integration 0 to t; i.e. the trajectory is back to the x,z plane). 
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For some periodic orbit it is sufficient to find initial conditions of X (position and velocity) such that after half 
=0= z 0 .

=0 with no velocity on x, z but 0y ≠0. 

then such orbit is periodic. One notes that in 

To find a periodic orbit, we suppose that a first starting point not too far from the solution is given. In order to 
(and further make a loop on it) .
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one follows the tangent of the curve v=h(u) at point u= u0  up crossing 

and finally )(. 0

1

01
0

uh
du
dhuu

uu












 .















 
















 


z
y

x
r

z
y

x
r

)1(

2

1







Eco-Kci-Me-069 Halo periodic orbit01.doc

Here the tangent (or Jacobian differential) is a bit delicate because in the definition of 

from 0 to T½. The derivative matrix 

 for the sub set of variable Y:

function )( XfX  for which one have (
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integrated simultaneously from t=0 to t. Hopefully some of the equations are trivial... 
Note that obviously the derivative is the null matrix at 

the numerical analysts say that the system is autonomous
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the function )( XfX  itself.

Just with the numbering of the variables of the first problem with index 1 to 6 and numbering the variable 
index 7, one get straight forward successively: 

So 
nYYdY
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Finally the solution of periodic orbits is performed by the integration of a system of 36 + 6= 
equations and that within a loop for finding the solution 
A further loop on the fixed variable allows plotting many halo orbits. With some tests, it was better to guess 

0x while keeping fixed 0z so in the equations above it is just

Note: The model and experiment is a stand alone model within EcosimPro "as
sophisticated libraries like ESPSS. Just in addition to the equations in EL (EcosimPro langage) shown below, a sim
called "ODE113" has been implemented for the integration of the 6 and 42 differential equations (based on Runge
possibility of error control and variable time steps) and also a matrix inversion routine with error quantification h
Such features could be as well added by the Ecosimpro team to 

3. Application to Halo orbits Lagrange point L2 of the system Earth+Moon
The system of equations §1 represent the CRTBP (circular restricted 3 body problem). For t
system, µ = 0.0121506038.
With initial values 

Xo1= 1.12037906887683 
Xo3=0.01                          
Xo5= 0.176061510401881 
Xo7=Thalfperiod_o=1.70775776152685 

we get the following simulation plots (with Xo[3]=Xo[3]+i*Xo[3]*0.01 for i=1 to 20) of 20 Halo orbits with 
run time around of 2 seconds for each Halo orbit.
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for which one have (for the numerical analysts they call it the STM state transition matrix

which is defined by a differential equation ),( 0 dt
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 Identity . That is an impressive system of 36 differential equations to be 

integrated simultaneously from t=0 to t. Hopefully some of the equations are trivial... 
Note that obviously the derivative is the null matrix at t=t0 because the time is not explicitly appearing in the equations f(X) 
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Just with the numbering of the variables of the first problem with index 1 to 6 and numbering the variable 
index 7, one get straight forward successively: Y= 3 5 7 and g(Y)=2 4 6. 

),( 0ttMof642linesof53Column and  thecollastin

Finally the solution of periodic orbits is performed by the integration of a system of 36 + 6= 
equations and that within a loop for finding the solution 0)( Yg with Newton, which lead to periodic orbit. 
A further loop on the fixed variable allows plotting many halo orbits. With some tests, it was better to guess 

so in the equations above it is just matter of replacing the index 3 by index 1.

The model and experiment is a stand alone model within EcosimPro "as
. Just in addition to the equations in EL (EcosimPro langage) shown below, a sim

" has been implemented for the integration of the 6 and 42 differential equations (based on Runge
possibility of error control and variable time steps) and also a matrix inversion routine with error quantification h
Such features could be as well added by the Ecosimpro team to EcosimPro "as-is"!

Application to Halo orbits Lagrange point L2 of the system Earth+Moon
The system of equations §1 represent the CRTBP (circular restricted 3 body problem). For t

-- x_o

-- z_o FIXED NOW

--ydot_o

Xo7=Thalfperiod_o=1.70775776152685 -- t 

plots (with Xo[3]=Xo[3]+i*Xo[3]*0.01 for i=1 to 20) of 20 Halo orbits with 
run time around of 2 seconds for each Halo orbit.

Page  2 / 5

Here the tangent (or Jacobian differential) is a bit delicate because in the definition of g there is integration 
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Finally the solution of periodic orbits is performed by the integration of a system of 36 + 6= 42 differential 
with Newton, which lead to periodic orbit. 

A further loop on the fixed variable allows plotting many halo orbits. With some tests, it was better to guess 
matter of replacing the index 3 by index 1.

The model and experiment is a stand alone model within EcosimPro "as-is" without need of 
. Just in addition to the equations in EL (EcosimPro langage) shown below, a simple function so 

" has been implemented for the integration of the 6 and 42 differential equations (based on Runge-Kutta with 
possibility of error control and variable time steps) and also a matrix inversion routine with error quantification has been added. 

Application to Halo orbits Lagrange point L2 of the system Earth+Moon
The system of equations §1 represent the CRTBP (circular restricted 3 body problem). For the Earth+Moon 

plots (with Xo[3]=Xo[3]+i*Xo[3]*0.01 for i=1 to 20) of 20 Halo orbits with 
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Of course, the above plot is very useful for analysts, but for a first view, using a 3D visualisation tool feed by 
the data from EcosimPro we can get a cubic view with projections of the orbits on the reference planes:
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Annex: Traceability
o Listing of the experiment

-- '  30/09/2015  17:34:16
/*-----------------------------------------------------------------------------------------
LIBRARY: MY_SAT
COMPONENT: Halo
PARTITION: default
EXPERIMENT: exp1
TEMPLATE: TRANSIENT
CREATION DATE: 14/08/2015
-----------------------------------------------------------------------------------------*/

EXPERIMENT exp1 ON Halo.default
DECLS
   REAL T_Halo
   STRING Filnam="Rep"

   INTEGER nbHalo=1
OBJECTS
INIT
   -- initial values for state variables

   BOUNDS
   -- Set equations for boundaries: boundVar = f(TIME;...)

   MY_SAT.AbsTolM12 = 1e-012
   MY_SAT.NbSteps2000 = 50
   MY_SAT.NorderRK85 =4 -- 5

BODY 
   GuessZ3notX1_o=1 
   Xo1= 1.12037906887683 -- x_o

   Xo3=0.01 -- zo FIXED NOW

   Xo5= 0.176061510401881--ydot_o

   Thalfperiod_o=1.70775776152685-- t

   NloopNewtonHalo=15
   T_Halo=2*Thalfperiod_o 

o Listing of the model
-- '  30/09/2015  17:24:42

COMPONENT Halo
DATA
   REAL Xo1=0.99197555537727 UNITS "DU" "xo"
   REAL Xo3=-0.00191718187218 UNITS "DU" "zo"
   REAL Xo5=-0.01102950210737 UNITS "DU/TU"
"vyo"
   REAL Thalfperiod_o=1.52776735363559 UNITS
"TU" "half period for periodic orbit, initial guess"
   INTEGER NloopNewtonHalo=0 UNITS "-" " 0 --no 
convergence-- else up to 14 is enough for convergennce"
   INTEGER GuessZ3notX1_o=3 UNITS "-" " flag=3 for 
xo fixed and zo guess ==>find a Lyapunov plan; flag=1 for zo fixed 
and xo guess ==>find Halo from a Lyapunov plan with some small zo 
"
   --REAL RunCode=2 UNITS "-" "code=0: J.D. Mireles James 1 
Nick Truesdale 2: Earth Moon L2, 10: J.D. Mireles James L2 from 
Lyapunov, etc..."

DECLS
   BOOLEAN FlagSearchPeriodicOrbit=TRUE --
directive for new search of periodic orbits
   CONST INTEGER LDIM=6
   INTEGER NorderRK,NbSteps, 
RKsteps42,RKsteps6, 
GuessZ3notX1,Function_ODE_IVP --info
   INTEGER i462[3]={4,6,2}
   INTEGER i357[3]={3,5,7}
   REAL X[LDIM] UNITS "-" --position then velocity in 
barycentric rotating frame addim
   REAL theta UNITS "-"
   REAL T_ECI,period UNITS "s"
   REAL periodDay UNITS "day"
   REAL r1,r2,Omega,Cjacobi UNITS "-"
   EXPL REAL wrotEM3D[3] , wrotEMCrossXXrot[3]
UNITS "-" --dim
   EXPL REAL XX[6], XXrot[3] UNITS "SI" --dim
   EXPL REAL Rnorm UNITS "m"
   EXPL REAL Vnorm UNITS "m/s"
   DISCR REAL Xf_n[LDIM] UNITS "-" --point then velocity in 
barycentric rotating frame addim
   DISCR REAL dX6_dt[LDIM] UNITS "-" --velocity then 
acceleration in barycentric rotating frame addim 
   DISCR REAL Xo_n[7+10], Xo[7] UNITS "-" -- 6+added 
more rowse for compact information data
   DISCR REAL PHI[6,7] UNITS "-"
   DISCR REAL DF[3,3],D[3,3],XSo[3], XSo_star[3]
,Xff[3],ErrCumul UNITS "-"
   DISCR REAL muE,muS,muM UNITS "m^3/s^2"
   DISCR REAL dEM,AU,DU UNITS "m"
   DISCR REAL MassU UNITS "kg"
   DISCR REAL wrotEM UNITS "-"
   DISCR REAL mu UNITS "-"
   DISCR REAL G = 6.67384E-11 UNITS "m^3/(kg.s^2)"-
-+- 0.00080 m^3.kg^-1.s^-2 
   DISCR REAL convergence_tfo UNITS "-"
   DISCR REAL to_n,tf_n,Thalfperiod UNITS "-"
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   nbHalo=20 
   Filnam="Halo20.rpt"
   -- creates an ASCII file with the results in table format

   REPORT_TABLE(Filnam, 
T_* Teco* V* conv* mu* per* r* wrot*] dE* L* "

   DEBUG_LEVEL= 1 -- set the debug level (valid range [0,4])

   IMETHOD= DASSL -- select default

   setStopWhenBadOperation(FALSE)
occurs (eg division by 0). By default do not stop.

   REL_ERROR = MY_SAT.AbsTolM12
solver (transient solver)

   ABS_ERROR = REL_ERROR
   TOLERANCE =REL_ERROR 
(steady solver)

   REPORT_MODE=IS_STEP 
to report results 
   -- calculates a steady state
   --STEADY()

   TIME = 0
   FOR (i IN 1, nbHalo)
      FlagSearchPeriodicOrbit=TRUE
      INTEG_TO(TIME+T_Halo,1)
      -- Case of series of Halo orbits (evolution of z)

      IF i!=nbHalo THEN --change but not for the last one to keep all results of the last 

            Xo[3]=Xo[3]+i*Xo[3]*0.01 
      END IF
   END FOR
END EXPERIMENT

   DISCR REAL AbsTol UNITS "-"
   DISCR REAL L1, L2, L3 UNITS "DU" --for info 

INIT
   FOR (i IN 1,6)
      Xo[i] = 0
   END FOR
   GuessZ3notX1=GuessZ3notX1_o
   muE = 1*3.986005E14
   muS = 328902.82113001*3.986005E14--; % was 
Relative to earth
   muM = 0.0123000569113856 *3.986005E14
   mu=muM/(muE+muM)
   dEM=384400e3
   Xo[1]=Xo1 --GuessZ3notX1=3 --guess Z User to choose or 
default =3
   Xo[3]=Xo3
   Xo[5]=Xo5
   Thalfperiod=Thalfperiod_o
   DU=dEM
   MassU=(muE+muM)/G
   wrotEM=sqrt(G*MassU/DU**3) 
   --for info here only because mu in known and allow computation of 
L1 L2 L2
   L1=findLagrangePoints(0.83, mu)-- init value not too 
far from the wanted roots 
   L2=findLagrangePoints(1.15 , mu)
   L3=findLagrangePoints(-1.0, mu)
   PRINT (" for_information:_L1,L2,L3_in 
DistanceUnitsEarthMoon= $L1 $L2 $L3 ") 
   --Eco Normal Init of the derivatives 

   FOR (i IN 1,6)
      X[i]=Xo[i]
   END FOR
   Xo[7]= Thalfperiod --variable added
   i357[1]=GuessZ3notX1
DISCRETE
   WHEN FlagSearchPeriodicOrbit THEN -- this is 
like a program to be run before starting integratons by EcosimPro 
depending on the directive FlagSearchPeriodicOrbit . 
      --Inputs : Xo[i] (including Xo[7]= Thalfperiod), NloopNewtonHalo 
, mu OUT: X[i] initialized by Xo which is set to the last converged 
Xo_n[i] (for a good starting guess for other periodic orbits)
      --Iteration on the suited IVP fulfilling the goal (with xo fixed 
(index 1) )
      -- goal: after a half_period vx,vz and y shall be all null (index 
4,6,2) with free variables to guess: initial values of zo, vyo, 
half_period (index 3,5 and variable tf_n)
      FlagSearchPeriodicOrbit=FALSE --clear the 
condition for running this routine
      to_n=0 --never modified here

      FOR (i IN 1,7)
         Xo_n[i]=Xo[i] --here we work with IVP Xo_n (including 
Thalfperiod) because Xo is never modified inside the next loop 

      END FOR
      --@@@@@@@@@@@@@@@@@@@@@@@@@@@

      FOR (k IN 1,NloopNewtonHalo)

         
IVP Xo_n to see how good are the guesses and process the 
iterations
         
         
         
         
         
as Thalfperiod an initial condition for the process of finding a periodic 
solution by convergence Newton 

         
NorderRK, AbsTol, NbSteps, mu, 
Function_ODE_IVP, RKsteps6 )
         
         
            
         
         
ODE integration to be nullified by converging the IVP XSo to 
XSo_star 
            
         
         
Xo_n given for to_n 
         
mu , RKstep
         
the time derivatives to fill the matrix DF (dFF/dxx)
         
) 
         
time derivatives d FF / d t = d xxdot_i / d t in column 7
            
         
         
(selected state variables and time) i462

         
            
               
i357[3]={3,5,7}

            
         
         
         
inv(dFF/dxx)*Xff

         
            
D[i,m]
         
         
         
            
before update of teh selected ones
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results in table format

REPORT_TABLE(Filnam, " *X[*] *XX[*] *PHI* Cj* A* G* Halo* *12 *00 *85 *U *RK Om* R* 

T_* Teco* V* conv* mu* per* r* wrot*] dE* L* ") 
set the debug level (valid range [0,4])

select default integration solver

setStopWhenBadOperation(FALSE)-- Set flag to stop when bad numerical operation 
occurs (eg division by 0). By default do not stop.

REL_ERROR = MY_SAT.AbsTolM12-- set relative and absolute tolerance for DASSL 

ABS_ERROR = REL_ERROR
TOLERANCE =REL_ERROR -- 1e-006 -- set relative tolerance for algebraics solver 

REPORT_MODE=IS_STEP -- REPORT_MODE=IS_EVENT,IS_CINT,IS_STEP -- when 

FlagSearchPeriodicOrbit=TRUE
+T_Halo,1)

Case of series of Halo orbits (evolution of z)

change but not for the last one to keep all results of the last case

*0.01 

         --call ODE integration for the final state Xf_n from the given 
IVP Xo_n to see how good are the guesses and process the 
iterations
         AbsTol=AbsTolM12--1E-12
         NbSteps=NbSteps2000
         NorderRK=NorderRK85
         Function_ODE_IVP=LDIM 
         tf_n=Xo_n[7] -- tf is a condition final for the ODE but it is 
as Thalfperiod an initial condition for the process of finding a periodic 
solution by convergence Newton 

         ODE113 (LDIM, to_n, tf_n, Xo_n, Xf_n, 
NorderRK, AbsTol, NbSteps, mu, 
Function_ODE_IVP, RKsteps6 )--out Xf_n
         --Zero search by Newton method iterations 

         FOR (i IN 1,3)
            XSo[i]=Xo_n[i357[i]]
         END FOR
         FOR (i IN 1,3)--Array with the 3 components results of 
ODE integration to be nullified by converging the IVP XSo to 
XSo_star 
            Xff[i]=Xf_n[i462[i]] -- i462[3]={4,6,2} i357[3]={3,5,7}

         END FOR
         --Jacobian at current final point tf_n=Xo_n[7] wrt IVP initial 
Xo_n given for to_n -- IT INCLUDES THE ODE113 SIZE 42
         STMatrixCR3BP ( to_n, tf_n , Xo_n, PHI, 
mu , RKsteps42)-- out PHI = d FF / d xx = d xxdot_i / d xx_j
         --derivative of X6 wrt time at final point, needed for getting 
the time derivatives to fill the matrix DF (dFF/dxx)
         Function_ODE_IVP_6( 6, Xf_n, dX6_dt, mu 

         FOR (i IN 1,6)--extended PHI last column added with 
time derivatives d FF / d t = d xxdot_i / d t in column 7
            PHI[i,7] = dX6_dt[i]
         END FOR
         -- dFF/dxx Full derivative of XXf (to be nullified) wrt XXo 
(selected state variables and time) i462[3]={4,6,2} i357[3]={3,5,7}

         FOR (i IN 1,3)
            FOR (j IN 1,3)
               DF[i,j] =PHI[i462[i],i357[j]] -- i462[3]={4,6,2} 
i357[3]={3,5,7}

            END FOR
         END FOR
         InvMatrix( 3,DF, D , ErrCumul)
         --XSo_star The next solution guess : XSo_star = XSo-
inv(dFF/dxx)*Xff

         FOR (i IN 1,3)--extended PHI with time derivatives

            XSo_star[i]=XSo[i]-SUM (m IN 1,3; 
[i,m]*Xff[m]) 

         END FOR
         --New Xo_n = Xo_n+1 for iterations

         FOR (i IN 1,7)
            Xo_n[i]=Xo[i] --come back to the first init conditions 
before update of teh selected ones

         END FOR
         FOR (i IN 1,3)
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            Xo_n[i357[i]]=XSo_star[i]--update the selected 
ones with better guesses

         END FOR
         -- end for the new Xo_n, ready to go for iterations
         --PRINTa1 (3, XSo_star , "new guess")
         --convergence and for info
         convergence_tfo=XSo_star[3]-XSo[3]
         Xo_n[8]= convergence_tfo --for info only and 
printing
         Xo_n[9]= NorderRK --for info only and printing
         Xo_n[10]= RKsteps6 --for info only and printing
         Xo_n[11]= RKsteps42 --for info only and printing
         Xo_n[12]= ErrCumul --for info only and printing
         Xo_n[13]= mu --for info only and printing

      END FOR --k
      --@@@@@@@@@@@@@@@@@@@@@@@@@@@
      PRINTa1 (13, Xo_n, "final_Xo_n--
_tf_n_converg_RK..._err--_mu ")

      FOR (i IN 1,7)--Update Xo from last converged Xo_n, and 
also memorized for starting other periodic orbit search if any
         Xo[i]=Xo_n[i] --including the time tf_n

      END FOR
      --Update wrt Init: New init conditions for derivative variables for 
EcosimPro integration: the right one for a periodic orbit

      FOR (i IN 1,6) --only 6 for X

         X[i]=Xo[i]

25/09/2015

      END FOR
   END WHEN
CONTINUOUS
   r1=((mu+X[1])**2+X[2]**2+X[3]**2)**(1/2)--distance 
point to body1
   r2=((mu+X[1]-1)**2+X[2]**2+X[3]**2)**(1/2)--
distance point to body2
   EXPAND (i IN 1,3) X[i+3] = X[i]'
   --dynamic f=ma in barycentric rotating frame, see for example J.D. 
Mireles James and many others
   X[4]'=+X[1]+2*X[5]-(X[1]+mu)*(1-mu)/r1**3-
(X[1]+mu-1)*mu/r2**3 
   X[5]'=+X[2]-2*X[4]-X[2]*(1-mu)/r1**3-
X[2]*mu/r2**3
   X[6]'=-X[3]*(1-mu)/r1**3-X[3]*mu/r2**3
   --for info

   Omega=0.5*(X[1]**2+X[2]**2)+(1-mu)/r1+mu/r2
   Cjacobi=2*Omega-(X[4]**2+X[5]**2+X[6]**2)
   --Geocentric results in ECI with vector XX
   T_ECI=TIME/wrotEM --TIME is addim = 6.28 for 1 period
   
period=2*3.141592653589793238462643383279
5 /wrotEM
   periodDay=period/86400

   EXPAND
coordinates
   wrotEM3D
   --cross product
   wrotEMCrossXXrot
wrotEM3D
   wrotEMCrossXXrot
wrotEM3D
   wrotEMCrossXXrot
wrotEM3D
   EXPAND_BLOCK
         
         
X[i+3]
   END EXPAND_BLOCK
   theta=
   XX
   XX
   XX
   --
   Rnorm=sqrt(SUM(i 
   Vnorm=sqrt(SUM(i 
END COMPONENT
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EXPAND (i IN 1,2) wrotEM3D[i]=0 -- only 2 first 
coordinates

wrotEM3D[3]=wrotEM -- the 3rd coordinate
cross product

wrotEMCrossXXrot[3]=wrotEM3D[1]*XXrot[2]-
wrotEM3D[2]*XXrot[1]

wrotEMCrossXXrot[1]=wrotEM3D[2]*XXrot[3]-
wrotEM3D[3]*XXrot[2]

wrotEMCrossXXrot[2]=wrotEM3D[3]*XXrot[1]-
wrotEM3D[1]*XXrot[3]

EXPAND_BLOCK (i IN 1,3) 
         XXrot[i] = X[i]*DU 
         XX[i+3] = 

[i+3]*DU*wrotEM+wrotEMCrossXXrot[i]
END EXPAND_BLOCK
theta=TIME --wrotEM*T_ECI
XX[1] = XXrot[1]*cos(theta)-XXrot[2]*sin(theta)
XX[2] = XXrot[1]*sin(theta)+XXrot[2]*cos(theta)
XX[3] = XXrot[3]

useful
Rnorm=sqrt(SUM(i IN 1,3; XX[i]**2))
Vnorm=sqrt(SUM(i IN 4,6; XX[i]**2))

END COMPONENT


